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Shortened complex span tasks can reliably measure working

memory capacity
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Abstract Measures of working memory capacity (WMC),
such as complex span tasks (e.g., operation span), have be-
come some of the most frequently used tasks in cognitive
psychology. However, due to the length of time it takes to
complete these tasks many researchers trying to draw conclu-
sions about WMC forgo properly administering multiple
tasks. But can the complex span tasks be shortened to take
less administration time? We address this question by splitting
the tasks into three blocks of trials, and analyzing each block’s
contribution to measuring WMC and predicting fluid intelli-
gence (Gf). We found that all three blocks of trials contributed
similarly to the tasks’ ability to measure WMC and Gf, and the
tasks can therefore be substantially shortened without chang-
ing what they measure. In addition, we found that cutting the
number of trials by 67 % in a battery of these tasks still
accounted for 90 % of the variance in their measurement of
Gf. We discuss our findings in light of administering the
complex span tasks in a method that can maximize their
accuracy in measuring WMC, while minimizing the time
taken to administer.
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Introduction

Tasks that measure individual differences in working memory
capacity are among some of the most frequently used non-
standardized tools in cognitive psychology today (Conway
etal., 2005). While these tasks are crucial in understanding the
mechanisms and relationships underlying human cognition,
they are also consistently used in the wider psychological
literature as predictors of a wide range of human abilities in
educational, developmental, social, and clinical psychology,
to name just a few (e.g., Engle, 2002; Kail 2007; Lee & Park,
2005; Schmader & Johns, 2003).

Why are these tasks used in such a broad range of the
literature? Possibly the most important and far-reaching aspect
of measuring WMC is that it predicts a number of important
characteristics about people. For example, people with higher
WMC tend to be better at multitasking, can better comprehend
complex language, are better at following directions, have
higher SAT scores, and are better at learning new program-
ming languages; in addition, WMC is even a predictor of how
well people with schizophrenia will be at managing their
medications (Engle, 2002; Engle & Kane, 2004; Heinrichs
et al. 2008; Shipstead et al., 2014; see also Barch et al., 2009).
Perhaps the most heavily measured relationship with WMC
though is its high correlation with the ability to reason and
solve novel problems, or general fluid intelligence (Gf;
Ackerman et al. 2005; Cowan et al., 2005; Engle, Tuholski,
Laughlin, & Conway, 1999; Engle, 2002; Kane et al., 2004;
Kyllonen & Christal, 1990).

A variety of tasks have been used as measures of WMC,
but some of the most widely used measures within cognitive
psychology are the complex span tasks — operation span,
symmetry span, and rotation span, amongst others (Conway
etal., 2005; Kane et al., 2004; Redick et al., 2012; Unsworth,
Heitz, Schrock, & Engle, 2005). To illustrate this point, these
complex span tasks are hosted on the Georgia Tech Attention
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and Working Memory Lab website (http://englelab.gatech.
edu) where, to date, more than 2000 researchers have
requested access to these tasks, which have been translated
into ten languages. However, while the reliability of these
tasks has been repeatedly verified (Redick et al., 2012), there
is one consistent concern researchers have expressed with
using them: they take a substantial amount of time to
administer.

This concern brings about two — mostly related — issues.
First, that these tasks are time consuming, and second, that
researchers often draw conclusions about WMC using only a
single task — perhaps due to time constraints when adminis-
tering these tasks. More specifically, a single task — such as a
complex span task — measures not only the cognitive ability in
question, but also other factors unrelated to that ability, such as
speed at solving math problems, reading ability, etc. (Loehlin,
2004; Wittman, 1988). In other words, a single indicator of
WMC cannot be considered a measurement of WMC itself as
the task contains variance from both WMC and the task.
Therefore, to draw specific conclusions about WMC re-
searchers should use multiple indicators to create either a
composite or factor score of the WMC construct that consists
of the variance shared between two or more complex span
tasks (Conway et al., 2005; Engle et al., 1999; Loehlin, 2004;
Shipstead et al., 2012; Wittman, 1988).

To address this timing concern, the present study examines
(1) whether the complex span tasks can be shortened without
substantially reducing how reliably they measure WMC, and
(2) a cost/benefit analysis of the complex span measures in a
way that informs and aids researchers in which task and block
combinations they can use to gain the most information in the
amount of time they have allotted. Given the wide use of
complex span tasks, shortening the time it takes to complete
the tasks would allow more researchers to measure individual
differences within their current lines of research.

In the current study, we asked subjects to complete three
complex span tasks and three measures of fluid intelligence.
We restructured the complex span tasks for this experiment by
creating three blocks of trials that kept the variation in the
number of items remembered constant across blocks. For ex-
ample, three blocks of the symmetry span consisted of one trial
each with two, three, four, and five items to remember, which
were then presented in random order. This method allowed us
to examine the individual contribution of each block to the
task’s ability to predict both WMC and Gf. We then compared
whether the earlier or later blocks of trials were more predictive
of WMC and Gf to determine if the tasks can be substantially
shortened, and then compared the amount of variance predicted
to the length of time each block of trials took to complete. This
analysis illuminated new combinations of tasks that can max-
imize the variance in Gf and WMC that the complex span tasks
measure, while minimizing the amount of time it takes to
administer multiple complex span tasks.
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Method
Subjects

Five hundred and eighty-nine university (N = 401) and com-
munity (N = 188) subjects, aged 18-35 (M =22.36, SD =4.50;
46.52 % female), successfully completed all six tasks in this
study as part of a larger, four-session, study. All subjects
reported speaking English fluently before the age of five
years.

Materials and procedure

Subjects completed three complex span tasks as measures of
working memory capacity (WMC) and three measures of fluid
intelligence (Gf) as part of a larger cognitive battery complet-
ed in our lab.'

WMC measures

We used three established complex span tasks to measure
WMC. In a complex span task subjects are given a sequence
of to-be-remembered items (such as a sequence of letters).
However, subjects must also complete a distractor task (such
as solving a math problem) between the presentations of each
to-be-remembered item in the sequence. The number of to-be-
remembered items, and the corresponding distractor tasks,
unpredictably varied from one trial to the next. Subjects saw
a sequence of anywhere from two to seven to-be-remembered
items (depending on the task), and saw each sequence length
three times. Typically, these sequence lengths are randomized
throughout the complex span task. Importantly though, this
randomization was modified for the current study. That is,
subjects completed three blocks of trials with one of each
sequence length randomly sampled within each block. To
the subject there would be nothing to suggest these sequence
lengths were blocked, but doing so allowed us to keep each
block of trials equal in terms of sequence lengths.

Other than blocking sequence lengths, the three complex
span tasks all followed the procedures of Unsworth and col-
leagues (2005). The primary distinction of this method is that
it requires subjects to maintain their response times for the
distraction items in each task — an important requirement to
reduce people’s ability to rehearse the to-be-remembered
items during the distraction task. For this purpose, subjects
were timed while practicing the distraction tasks during the
instruction phase. They were then required to respond within
2.5 standard deviations (SDs) of their average response time to

! The results of the larger battery can be found in Shipstead et al. (2014).
It may be noted that the sample size for this study is larger than the sample
size in Shipstead et al. This difference is due to subjects who did not
complete, or accurately complete, tasks within the battery other than those
presented here.
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Fig. 1 Examples of Operation Span, Symmetry Span, and Rotation Span

each distraction item. These tasks are available for download
from the Attention and Working Memory Lab website (http://
englelab.gatech.edu/tasks.html).

Operation span As panel A of Fig. 1 shows, the operation
span (OSpan) uses letters as the to-be-remembered items, and
simple math problems as the distractor task (Kane et al., 2004;
Unsworth et al., 2005). Subjects first solve a math problem,
and then see a letter, and then solve another math problem, and
see another letter. This math-letter sequence is repeated from
three to seven times for each trial with an unpredictable length
each time. After each math-letter sequence, subjects are asked
to recall, in order, the preceding letters. Scores are calculated
by summing the number of letters correctly recalled in the
correct order — also known as the partial score (Turner &
Engle, 1989).

Symmetry span Panel B of Fig. 1 shows an example item from
the symmetry span (SymSpan; Kane et al., 2004; Unsworth,
Redick, Heitz, Broadway, & Engle, 2009). The SymSpan task
followed a similar method to the OSpan with three key dif-
ferences. First, the distractor task is judging whether a
displayed shape is symmetrical along its vertical axis.
Second, the to-be-remembered items are locations of red
squares in a 4x4 grid of potential locations. Finally, the
number of symmetry-location pairs varied from two to five
times per trial.> Scores are calculated by summing the number
of red square locations correctly recalled in the correct order.

Rotation span Panel C of Fig. 1 shows an example trial from
the rotation span (RotSpan; Kane et al., 2004, Harrison et al.,

2 The maximum number of items to recall varies between the three tasks.
These differences in the maximum recall number are based on previous
studies and were used to maintain consistency with previous research
using these tasks.

2013). The RotSpan follows a method similar to the other two
tasks, with three key differences. First, the distractor task is
judging whether a rotated letter is presented correctly, or is a
mirrored image of the letter. Second, the to-be-remembered
items are arrows of either short or long length and pointing in
one of eight different directions. Finally, the rotation-arrow
sequence is repeated from two to five times per trial. Scores
are calculated by summing the number of arrows correctly
recalled in the correct order.

Fluid intelligence measures

Raven’s advanced progressive matrices (RAPM) The RAPM
task consisted of the 18 odd-numbered items from the
larger, 36-item RAPM (Raven, Raven, & Court, 1998). In
the RAPM, subjects see a 3x3 grid of shapes with the
bottom right shape missing. The shapes themselves follow
a logical pattern from left to right, and from top to bottom.
The subject’s task is to choose, from a list of eight possible
choices, the shape that logically fits in the missing corner.
Subjects were allowed a maximum of 10 minutes to com-
plete all 18 problems. Scores were calculated by summing
the number of correct answers.

Letter sets The Letter Sets task consists of 30 items (Ekstrom,
French, Harman, & Dermen, 1976). In this task, subjects see
five sets of four letters. Four of the sets of letters follow a
similar logical sequence, while the fifth set does not follow
that logical sequence. For example, four sets of letters may
show letters increasing in alphabetical order (DEFG, ABCD,
WXYZ, MNOP), while the fifth set may show letters decreas-
ing in alphabetical order (ZYXW). The subject’s task is to
choose the set of letters that does not logically fit with the rest.
Subjects were allowed a maximum of 7 minutes to complete
all 30 problems, and their scores were calculated by summing
the number of correct answers.
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Table 1 Descriptive statistic and pearson correlations among tasks
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.

1
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5 SymSpan: 26.62 9.04 -0.43 -0.50 0.56 0.53 0.49 0.53 —

.

1

1

6. RotSpan: 24.56 9.84 -0.44 -0.57 0.56 0.58 0.54 0.52 0.68 —

Note.RAPM=Raven’s Advanced Progressive Matrices, OSpan=Operatiom Span, SymSpan=Symmetry Span, RotSpan=Rotation Span

Number series The Number Series task consists of 15
items (Thurstone, 1938). In this task, subjects see a sequence
of numbers that follow a logical pattern (1, 2, 3, 5, 8, 13, 21).
The subject’s task is to choose, from five available options, the
next number in the sequence (34). Subjects were allowed a
maximum of 5 minutes to complete all 15 problems, and their
scores were calculated by summing the number of correct
answers.

All tasks were part of a larger study conducted across four
two-hour sessions. The complex span tasks were always the
first task on the first, second, and third day for OSpan,
SymSpan, and RotSpan, respectively. The measures of Gf
were always the third task on each of the first, second, and
third days for Number Series, RAPM, and Letter Sets,
respectively.

Results and discussion

Before addressing our primary research questions, we first
sought to verify that the measures of fluid intelligence and
the complex span tasks formed distinct, but related, constructs
using (1) zero-order correlations, and (2) factor analysis.
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Table 1 outlines the correlations among the measures of
fluid intelligence and working memory. Consistent with the
wider literature, all of the tasks show relatively high correla-
tions with each other (Range: .45~.68, all ps < .01).
Importantly though each Gf'task is highly correlated with each
other Gf task (.61~.68), and each complex span task is highly
correlated with each other complex span task (.52~.67). The
generally high correlation within each construct — relative to
the lower correlations between each construct (.45~58) —
suggests that these tasks did measure two related, but distin-
guishable, abilities.

The results of the correlations suggest these tasks are highly
correlated. As such, we further analyzed this pattern using a
two-solution factor analysis to further test their distinguishabil-
ity.® Because of the well established high relationship between
these constructs, we used principal-axis factoring with a
Promax rotation (K = 4) to allow the factors to correlate. The
pattern loadings of this factor analysis appear in Table 2.
Importantly, the loadings of each task on the two factors
confirm that the Gf tasks form the first distinct factor, and the

? Using a maximum-likelihood estimation, we found that x 2 was signif-
icantly reduced using a two-factor solution as opposed to a one-factor
solution, Ax % (5) = 94.61, p < .01. Based on previous research (Engle,
2002; Engle et al., 1999; Kane et al., 2004) and this analysis, we used the
two-factor solution.
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Table 2 Rotated factor loadings of the six tasks using Promax (K=4)
rotation

Factor 1 Factor 2
1. Number Series 0.800 0.059
2. RAPM 0.636 0.174
3. Letter Sets 0.813 -0.019
4. OSpan 0.269 0.433
5. SymSpan -0.040 0.869
6. RotSpan 0.126 0.711

Note. RAPM=Raven’s Advanced Progressive Matrices, OSpan=Opera-
tion Span, SymSpan=Symmetry Span, RotSpan=Rotation Span

complex span tasks form the second distinct factor. Consistent
with previous findings, the factor correlation showed these two
factors were highly correlated (»=.76; Engle et al., 1999; Kane
et al., 2004; Kane, Hambrick, & Conway, 2005; Oberauer et al.
2005). Taken together, the results of the correlation table and
the factor analysis suggest that these two sets of tasks did
measure related, but distinct, abilities.

Are later blocks of trials in complex span tasks more
predictive of fluid intelligence than earlier blocks of trials?

If later blocks of trials in the complex span tasks are more
predictive of fluid intelligence than earlier blocks of trial then
shortening the complex span tasks would substantially reduce
their ability to predict WMC. To address this question, we first
created two — unrotated — factor scores using principal-axis
factoring: one using the Gf tasks, and the second using the
complex span tasks. For the WMC factor, we recalculated
three different factors — each omitting one of the three blocks.
This omission was to avoid having any given block of trials
predict a factor containing that block of trials. Next, we tested

Table 3 Predicted variance in Fluid Intelligence (Gf) and Working
Memory (WM) factors using the full model, or only trials from block 1,
block 2, or block 3

Blocks Included in Model Predicted Factor Total Variance
Predicted
All blocks from all Fluid Intelligence 51.5%
tasks (Full Model) Working Memory _
Block 1 only from all Fluid Intelligence 46.5%
three tasks Working Memory 71.8%
Block 2 only from all Fluid Intelligence 44.3%
three tasks Working Memory 75.4%
Block 3 only from all Fluid Intelligence 44.0%
three tasks Working Memory 73.3%

Note. For the WM factor, the block used as the predictor variable was
removed from the outcome variable. For example, in the Block 2 only
analysis, the working memory factor was created using only data from
block 1 and block 3)

seven regression models to see how much of the variance in
the Gf factor all three blocks of complex span tasks predicted,
and how much of the variance each block of trials predicted in
the WMC and Gf factors. In all seven models the variables
were entered simultaneously. The results of these regression
models appear in Table 3.

Three findings in Table 3 are notable. First, when using all
three blocks of all three tasks the regression model accounts
for 51 % of the variance in the Gf factor. Second, a comparison
between the models using Block 1 only and Block 3 only
shows that the last block of trials (R* = .73) does not explain
significantly more variance in WMC than the first block of
trials (R* = .72), Z = 0.55, p = .58.* Third, the last block of
trials (R = .44) does not explain significantly more of the
variance in the Gf factor than the first block of trials (R* = .47),
Z = 0.58, p = .56. Taken together, these findings suggest that
the three blocks of trials are statistically equivalent in their
ability to measure Gf and WMC.”

Can the complex span tasks be shortened
without substantially reducing their predictive validity?

Given our findings that the later blocks of trials are no more
predictive of Gf or WMC than earlier blocks of trials, we next
address the question of whether the tasks can be shortened
without substantially reducing their ability to measure WMC.
We address this question in three ways. First, we ask if
reducing the number of blocks — while using all three tasks
— substantially reduces the tasks’ ability to predict both the
WMC and Gf factors. Second, we ask if reducing the number
of blocks in any given task substantially reduces the task’s
ability to predict the WMC and Gf factors. Finally, we ask
whether reducing the number of trials in these complex span
tasks reduces the reliability of these measures more than
would be expected using the Spearman-Brown prophecy for-
mula (Brown, 1910; Spearman, 1910).

Figure 2 shows the amount of WMC and Gf factor variance
predicted by any given block of trials.® This figure

“ Due to the fact that the dependent measures for these regressions were
not identical, we used Fisher’s r-to-Z transformation for this analysis.

> In addition to these regression analyses, we conducted two confirmatory
factor analyses (CFA) using the three blocks of each task to form each of
three factors (i.e., an OSpan factor). In the first CFA, the three blocks of
trials were allowed to load freely on each task’s factor. In the other CFA,
the factor loadings were set to be equal for each block. Consistent with the
findings of the regression analyses, these two CFAs did not significantly
differ from one another, x %(6) = 10.74, p =.10. In other words, no single
block of trials was a better indicator of the task than any other block.

® It is important to note that Panel B demonstrates the individual contri-
bution of each task to a factor score that includes that task — a method that
is generally problematic for interpretation. As such, 100 % of the variance
in “All Three” is predicted by using Blocks 1, 2, and 3 — the variables are
identical. However, since we are interpreting the ability of each task to
measure the WMC factor we have chosen to include Panel B regardless of
this limitation.
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Fig. 2 Predicted variance by task, block and factor predicted

demonstrates the additive variance of each block using hier-
archical regression models with Block 1 always entered first,
followed by Block 2 and finally Block 3. It shows us four
important findings. First, the larger bars on the left side of the
dashed line in both Panel A and Panel B show that the
majority of both the Gf (R* = .47) and WMC (R = .87) factor
variance explained by the complex span tasks can be
accounted for in the first block of trials in each task, while
the third block of trials only accounts for 3.2 % and 1.4 % of
the variance in the WMC and Gf factors respectively. Given
our relatively large sample size, even a 1.4 % increase in the
explained variance is statistically significant (F(3, 579) =5.48,
p <. 01), but in most cases it could be argued that this
relatively small increase in explained variance is not a sub-
stantial increase. Second, the remaining three bars in Panel A
demonstrate that even within a single complex span task, the
majority of the Gf variance explained by the task is accounted
for in the first block of trials, while the third block of trials
only accounts for about 2 % of the variance from any given
task. Third, the three right bars of Panel B demonstrate that —
similar to Panel A — even within a single complex span task,
the majority of the WMC variance explained by the task is
accounted for in the first block of trials, while the third block
of trials accounts for far less of the variance (4 % ~ 6 %) from
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any given task. Finally, a comparison between the bar on the
left of the dashed line in Panel A, and the three bars on the
right shows that even a single block of trials from each of the
three tasks (R*> = .47) is more predictive of the Gf factor than
all of the blocks on any given task (R*s= .32 ~ .41).

Another important question to address when asking if these
tasks can be shortened is whether the reduction in the tasks’
reliability and correlation to Gf are larger than would be
expected based on the reduced number of items in the task.
In other words, does reducing the length of the task
disproportionally reduce the reliability and predictiveness of
the task? To address this question, we next conducted a
Spearman-Brown prophecy analysis (Brown, 1910;
Spearman, 1910) to compare the expected reduction in task
reliability (as measured with Cronbach’s alpha) and
predictiveness (correlation to Gf) with the actual reduction.
These findings appear in Table 4. Table 4 demonstrates two
important findings from the Spearman-Brown prophecy anal-
ysis. First, for all three tasks, there was no significant decrease
from the task’s reliability predicted by the Spearman-Brown
prophecy to the actual reliability (Ws < 0.91, ps > 0.13; Feldt,
1969). In addition, the actual correlation with Gf was not
significantly lower than the predicted correlation with Gf (Zs
<0.05, ps > 0.96). In other words, the reduction in the number
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Table 4 Actual and Spearman-Brown prophecy predicted reliability and correlations to the Gf factor using all three blocks of each task, the first two

blocks of each task, and the first block only of each task

All 3 Blocks Block 1 & 2 Block 1
OSpan Actual Cronbach’s « 0.870 0.817 0.690
Predicted — 0.817 0.690
Actual correlation to Gf 0.566 0.547 0.523
Predicted correlation to Gf — 0.549 0.504
SymSpan Actual Cronbach’s « 0.825 0.753 0.609
Predicted — 0.759 0.611
Actual correlation to Gf 0.601 0.581 0.543
Predicted correlation to Gf — 0.576 0.517
RotSpan Actual Cronbach’s o 0.866 0.808 0.658
Predicted o — 0.812 0.683
Actual correlation to Gf 0.640 0.627 0.576
Predicted correlation to Gf — 0.620 0.569

of items matched what would be expected if the later blocks
were no more important to measuring WMC than the earlier
blocks.

In short, these findings suggest that the complex span tasks
can, in most cases, be reduced without substantially decreas-
ing their reliability or predictive utility. More specifically, the
third block of trials can be removed from all three tasks, and
the total loss of explained variance in Gf is only 1.4 %. In
many cases, even the total reduction of 4.4 % of the explained
variance by removing both the second and third blocks would
be considered reasonable. In addition, using multiple tasks —
even while reducing the number of trials in each task — results
in a far better measure of WMC than using all of the trials in
any single task.

Which task and block combinations are the most beneficial?

The question of which tasks and how many blocks of each
task should be used will obviously vary based on the research
questions being asked, the amount of variance that needs to be
predicted, and the length of time that can be allotted to
administering the complex span tasks (see Table 5). Several
of these factors may need to be taken into account when
deciding which tasks and blocks should be used, but some
general rules can be found by looking at the results of this
study. Before addressing these general rules, it is important to
note that this study did not counterbalance the order of the
complex span tasks — a decision based on standard methods in
individual differences research. While a lack of
counterbalancing does not invalidate the data in any way, it
does limit some conclusions we can draw about the combina-
tion of tasks to use. More specifically, the fact that all of the
instructions are similar across the three tasks would likely lead
subjects to take longer on the first set of instructions — and on
the first task in general — than on the later sets of instructions

and tasks. As such, the analyses we present will always
include at least the first block of trials in the OSpan before
including the SymSpan, and at least one block of trials from
both the OSpan and SymSpan before including a block of
trials from the RotSpan.

Accounting for this limitation, Table 6 outlines the 39
models with combinations of tasks and blocks that we can
draw conclusions about. It is ordered by the amount of time it
took 95 % of subjects to complete all of the tasks and blocks

Table 5 Number of minutes it took Subjects (Ss) to complete each
section of the task

Minutes to complete each section

Instructions Block 1  Block2  Block 3
OSpan Mean 9.03 343 3.20 3.10
SD 2.90 1.18 1.08 1.03
Median 8.50 3.06 2.86 2.81
95% of Ss 13.90 5.69 5.28 5.16
SymSpan  Mean 4.70 251 1.56 1.34
SD 1.52 0.66 0.41 0.40
Median 445 2.36 1.47 1.26
95% of Ss  7.43 3.58 235 2.08
RotSpan ~ Mean 6.56 1.58 1.62 1.38
SD 1.82 0.34 0.34 0.29
Median 6.26 1.50 1.46 1.21
95% of Ss  10.06 2.26 2.34 1.91

Note 1.95% of Ss is used as a general measure of how much time to allot
for Ss to complete that section

Note 2. OSpan = Operation Span, SymSpan=Symmetry Span, RotSpan=
Rotation Span, SD= Standard Deviation

Note 3. Included in the time for the instructions are the actual instructions,
three sets of practice trials, and the 15 distractor task practices used for
calculating subjects’ mean response times to distractor tasks
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Table 6 Fluid Intelligence (Gf) and Working Memory (WM) factor variance accounted for by the 39 possible models

Model OSpan SymSpan RotSpan Minutes for 95% of Gf Variance Proportion of Gf
Blocks Blocks Blocks Ss to complete Predicted Variance Predicted

1 1 - - 19.59 27.3% 53.4%
2 12 - - 24.87 30.0% 58.7%
3 123 - - 30.04 32.5% 63.6%
4 1 1 - 30.60 40.1% 78.5%
5 1 12 - 32.96 42.4% 83.0%
6 1 123 - 35.04 43.6% 85.3%
7 12 1 - 35.88 41.1% 8/0.4%
8 12 12 - 38.24 43.2% 84.5%
9 12 123 - 40.32 44.2% 86.5%
10 123 1 - 41.05 42.2% 82.6%
11 1 1 1 42.92 46.5% 91.0%
12 123 12 - 43.40 44.0% 86.1%
13 1 1 12 45.26 48.6% 95.1%
14 1 12 1 4528 47.5% 93.0%
15 123 123 - 45.48 45.0% 88.1%
16 1 1 123 47.17 49.4% 96.7%
17 1 123 1 47.36 48.0% 93.9%
18 1 12 12 47.61 49.3% 96.5%
19 12 1 1 48.20 47.2% 92.4%
20 1 12 123 49.52 50.0% 97.8%
21 1 123 12 49.69 49.6% 97.1%
22 12 1 12 50.54 49.1% 96.1%
23 12 12 1 50.56 48.1% 94.1%
24 1 123 123 51.60 50.2% 98.2%
25 12 1 123 52.45 49.9% 97.7%
26 12 123 1 52.64 48.5% 94.9%
27 12 12 12 52.89 49.7% 97.3%
28 123 1 1 53.37 48.1% 94.1%
29 12 12 123 54.80 50.4% 98.6%
30 12 123 12 54.97 50.0% 97.8%
31 123 1 12 55.70 49.8% 97.5%
32 123 12 1 55.72 48.8% 95.5%
33 12 123 123 56.88 50.6% 99.0%
34 123 1 123 57.61 50.5% 98.8%
35 123 123 1 57.80 49.2% 96.3%
36 123 12 12 58.06 50.3% 98.4%
37 123 12 123 59.97 50.9% 99.6%
38 123 123 12 60.14 50.5% 98.8%
39 123 123 123 62.05 51.1% 100.0%

Note. Block number of each task that was used is listed under the task headings.Table is sorted by the amount of time it takes for 95% of subjects (Ss) to
complete the specified blocks/tasks. Underlined Models specify models that predict less Gf variance than a model that takes less time to complete

within each model, and shows the amount of variance in the
Gf factor that the model explains. In addition, the far right
column shows the percentage of the maximum 51.1 % of the
full model (model 39) Gf variance that the complex span tasks
can predict. This column allows us to look at a reduction
account of the variance by seeing what percentage of the
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variance prediction is lost by reducing the full model.
Importantly, more than half of these models (the 23 underlined
models) demonstrate task and block combinations that ac-
count for less of the variance in the Gf factor than another
combination that takes less time to administer. Models that are
not underlined are displayed in Fig. 3, which graphs the
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amount of variance in Gf explained by each model by the
amount of time it took 95 % of subjects to complete the tasks
in the model.

While many conclusions can be drawn by Table 6 and
Fig. 3, one key finding seems vitally important for researchers
measuring WMC. One of the more commonly used, albeit
inappropriate, methods that researchers use to draw conclu-
sions about WMC is to administer only the OSpan (model 3).
However, the OSpan alone accounted for less than two-thirds
of the variance in the Gf factor that the full model accounted
for. While some researchers may be using this single indicator
due to a lack of knowledge about the need for multiple
indicators, we believe that most do so due to time constraints.
That is, the OSpan alone takes just over 30 minutes for 95 %
of subjects to complete the task. However, these data suggest
an alternative method that takes a similar amount of time:
using one block of the OSpan and one block of the SymSpan
(model 4). While taking less than a minute longer for 95 % of
subjects to complete the tasks, this combination accounts for
more than three-quarters of the variance from the full model,
and adds a second indicator to more appropriately create a
WMC factor. More specifically, for virtually the same amount
of time it takes to conduct the OSpan task alone, researchers
could use this specific task/block combination to account for
an additional 14.9 % of the variance (see Table 6) that the full
model predicts in the Gf factor.

Assuming that researchers who are not already using mul-
tiple indicators do so due to time constrains, the results
outlined in Table 6 demonstrate the best combinations of tasks
and blocks to use given a specific amount of time allotted for
WMC measures. For example, if a researcher can only allot 35
minutes to completing WMC tasks, then the best combination
would be to use the first blocks of the OSpan, and all three
blocks of the SymSpan (model 9). At 50 minutes, the ideal
combination would be to use model 20.

While these models can guide researchers in choosing the
combinations that give them the most explained variance
given a specific amount of time, one question still remains:
what combination can reduce the time to complete the tasks
without a substantial decrease in their predictive utility? While
again, specific circumstances can lead to needing more or less
variance accounted for, a good - albeit arbitrary - cut-off point
is the point at which 90 % of the full model variance is
accounted for. Using this cut-off point, the data suggest that
asingle block of each of the three tasks (model 11) is sufficient
for the WMC tasks to predict the Gf factor. At42.9 minutes to
complete, this combination reduces the time it takes to com-
plete the three WMC measures by 28 % [1 - (42.9 / 59.8) =
.28], while still accounting for 91 % of the full model variance
when predicting the Gf factor.

These findings have important implications for both indi-
vidual differences research and the wide range of research
conducted using measures of WMC. First, they highlight
some of the deficiencies in using only a single task to measure
WMC, while offering an alternative solution that greatly in-
creases the ability to accurately measure WMC with little
effect on the time it takes for subjects to complete the tasks.
In addition, they offer the thousands of research laboratories
using complex span measures insight into how to reduce the
time-cost of using these measures without substantially reduc-
ing the amount of Gf factor variance they predict or, in some
cases, increasing the predicted variance.

Summary

Overall these findings offer a means to substantially reduce
the time it takes to accurately measure WMC using complex
span tasks, without substantially reducing their validity. It is
important to note that the findings of this study used only a
single type of WMC measurement: complex span tasks. There
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are many paradigms that are used to measure WMC such as n-
back, visual array, and binding tasks (Gevins & Cutillo, 1993;
Luck & Vogel, 1997; Wilhelm et al. 2013). Furthermore, just
as using a single task to measure a construct like WMC creates
problems in differentiating between task and construct vari-
ance, there are similar concerns with using a single paradigm
(Loehlin, 2004; Wittman, 1988). As such, using multiple
paradigms to measure WMC should result in a better measure
than multiple tasks all from the same paradigm.

Of course, the lack of counterbalancing has limited the
conclusions we can draw about the most ideal methods of
delivering complex span tasks. Indeed, a close inspection of
Fig. 3 would suggest that the first block of the RotSpan and
SymSpan may be more beneficial than the first block of the
OSpan. While this finding may be driven by the OSpan being
the first complex span task, it may alternatively suggest that
one block each of the SymSpan and RotSpan may be more
beneficial, and quicker, than one block each of the OSpan and
the SymSpan. Future research could look at the role of task
order and task position in the task’s ability to predict Gf.
Regardless of this limitation, our findings do reveal evidence
of improved combinations that can substantially reduce the
time it takes to accurately measure WMC, without substan-
tially reducing their predictive validity.

In addition to the single paradigm and counterbalancing
limitations, three other limitations exist with the nature of this
experiment. First, we measured WMC using two spatially
oriented tasks (SymSpan, RotSpan) and only one verbally
oriented task (OSpan). It is important to note that the use of
two spatially oriented tasks may place undue weight on spatial
abilities in the WMC factor (Kane et al., 2004). This limitation
might also explain why the OSpan task showed the lowest
relationship to the WMC factor. Second, the tasks were run on
separate days within a larger battery of tasks, rather than back-
to-back as they would in a single session experiment. It is
possible that the importance of later blocks of trials may
increase when the tasks are run back-to-back. Finally, a close
inspection of Table 5 will show that the instructions of each
task — which includes several practice trials — take a substantial
amount of time to complete. The question of whether the
instructions can be substantially shortened without reducing
the tasks’ ability to measure WMC is an important question
unanswered by this research.

Perhaps the most beneficial finding of this study is that a
single block of the OSpan and a single block of the SymSpan
predict more variance in the Gf factor than all three blocks of the
OSpan. This finding is most important in light of a large number
of studies that draw conclusions about WMC ability from a
single task, and offer an alternative method with little or no cost
in completion time, that drastically improves the validity of
measuring WMC. However, this finding should not be taken to
justify using only a single block of two tasks rather than using the
full battery of tasks. Indeed, the minimum to account for 90 % of
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the variance in the Gf factor would be recommended, which
includes one block each of all three tasks — a combination that
reduces the time taken for the full model by 28 %.
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